From Quasi-Solutions to Solution: An Evolutionary Algorithm to Solve CSP
نویسنده
چکیده
This paper describes an Evolutionary Algorithm that ree pairs to solve Constraint Satisfaction Problems. Knowledge about propp erties of the constraints network can permit to deene a tness function which is used to improve the stochastic search. A selection mechanism which exploits this tness function has been deened. The algorithm has been tested by running experiments on randomly generated 3-colouring graphs, with diierent constraints networks. We have also designed a specialized operator permutationn, which permits to improve the perforr mance of the classic crossover operator, reducing the generations number and a faster convergence to a global optimum, when the population is staying in a local optimum. The results suggest that the technique may be successfully applied to other CSP.
منابع مشابه
A Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm
One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...
متن کاملNew Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملDetermination of Optimal Parameters for Finite Plates with a Quasi-Square Hole
This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996